
An Investigation of Grid-enabled Tree Indexes for
SpatialQuery Processing

Jaewoo Shin
shin152@purdue.edu
Purdue University

West Lafayette, Indiana

Ahmed R. Mahmood
amahmoo@google.com

Google Inc.
Madison, Wisconsin

Walid G. Aref
aref@purdue.edu
Purdue University

West Lafayette, Indiana

ABSTRACT
Two-dimensional tree-based spatial indexes (e.g., the quad
tree or the k-d tree) are commonly used for indexing spa-
tial data. However, both types of indexes have limitations.
Although two-dimensional trees can handle skewed data,
index traversal and tree maintenance can be expensive. In
contrast, a spatial grid has low update overhead, but is not
suitable for skewed data. In this paper, we investigate the
augmentation of a grid into tree-based indexing for spatial
query processing. We introduce the Grid-Enabled Tree index
(the GE-Tree, for short); a hybrid spatial index that augments
a grid into two-dimensional tree indexes. In particular, we
investigate the use of a grid at the leaf level of a quadtree to
facilitate tree navigation and maintenance. At the expense
of the extra storage, the GE-Tree achieves constant-time
tree search, insert, update, and leaf node neighbor finding
operations, in contrast to the log time in conventional two-
dimensional trees, e.g.,O(log S) in S×S space as in the case of
the quadtree. Also, we illustrate how the range and k-nearest-
neighbor operations can be facilitated using grid-enabled
trees. Experimental results using real spatial data highlight
the tradeoffs of when using grid-enabled trees pay off in con-
trast to regular space-partitioning trees for range and k-NN
operation. Also, the GE-Tree outperforms conventional tree
or grid-only indexes by up to two times for leaf node access
operations, e.g., as in point-location search, neighbor-finding
search operations, and the k-nearest neighbor search.

CCS CONCEPTS
• Information systems→Data structures; Point lookups;
Multidimensional range search.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6909-1/19/11. . . $15.00
https://doi.org/10.1145/3347146.3359384

KEYWORDS
Spatial index, Query processing, Grid-based spatial index,
Quadtree
ACM Reference Format:
Jaewoo Shin, Ahmed R. Mahmood, and Walid G. Aref. 2019. An In-
vestigation of Grid-enabled Tree Indexes for Spatial Query Process-
ing. In 27th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems (SIGSPATIAL ’19), November
5–8, 2019, Chicago, IL, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3347146.3359384

1 INTRODUCTION
Many mobile applications generate large volumes of spatial
data, e.g., social media applications, ride-sharing applications,
and weather alert services. Spatial indexing is important to
ensure low latency and fast response times for these services
and applications. In this paper, we investigate the augmen-
tation of a grid into a tree-based index for efficient spatial
query processing.

(a) grid (b) quadtree

Figure 1: Sample objects in (a) A grid index with w=15, h=10
and min(X,Y)=(20,15) and (b) a quadtree with threshold=2.

On the one hand, using only a two-dimensional uniform
grid allows for rapid access to data given location as input.
However, a uniform grid does not handle skewed datasets
efficiently, and does not enable efficient query processing
(e.g., the range or the k-nearest-neighbor operation) due to
load imbalance. On the other hand, space-partitioning trees
(e.g., a quadtree or a k-d tree) are broadly used in applications
(e.g., as in [1, 8, 10, 13]) because of their ability to handle
skewed datasets and queries. However, a tree index causes a
bottleneck due to the tree traversal time from the root to the
leaf nodes. This is especially true in time-sensitive streaming
applications that require low latency.

https://doi.org/10.1145/3347146.3359384
https://doi.org/10.1145/3347146.3359384

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Shin, et al.

In this paper, we investigate grid-enabled trees, the GE-
tree, for short, where we augment a spatial tree-based index
with a grid structure, and study the trade-offs in query pro-
cessing efficiency at the expense of the extra space that a grid
structure consumes. Throughout the paper, the GE-Tree min-
imizes tree traversal and maintenance times, and supports
the range and the k-NN operations efficiently. The GE-Tree
is able to achieve constant-time tree operations in contrast
to logarithmic time in conventional space-partitioning trees.
Also, we study how to perform the range or the k-nearest-
neighbor (or k-NN, for short) operations using the GE-Tree.
Our experimental results demonstrate that the GE-Tree out-
performs conventional tree-only or grid-only indexes up
to two times in tree building time and up to six times in
performing the range and k-NN operations.

The contributions of this paper are as follows:
• We introduce grid-enabled trees, the GE-tree, a hybrid
spatial data structure for minimizing tree maintenance
time and enhancing query processing time.
• We study the structure of the GE-Tree, and develop
constant-time operations for search, insert, update, and
neighbor finding. In addition, we present algorithms
for the range and k-NN operations using the GE-tree
for efficient spatial query processing.
• We conduct extensive experiments using real datasets.
The experimental results demonstrate that the GE-Tree
outperforms a conventional tree-only structure for
various spatial operations. Also, we compare against a
grid-only structure and highlight the cases when the
GE-Tree can outperform the grid-only structure and
vice versa.

The rest of this paper proceeds as follows. Section 2 pro-
vides background material. Section 3 presents the GE-Tree
structure and introduces mechanisms for constant-time node
operations. Section 4 presents new algorithms for range and
k-NN query processing. Finally, Section 5 presents the results
of the performance of the GE-Tree in comparison to the grid
index and other conventional spatial tree indexes.

2 BACKGROUND
We present an overview of space-driven data structures, the
spatial grid, and space-partitioning trees that are core and
basic methods for spatial indexing in traditional systems.

2.1 The Grid Structure
The grid-based spatial index is a simple yet effective struc-
ture for organizing and searching for spatial objects in the
appropriate grid cells. Spatial data processing systems, e.g.,
SpatialHadoop [5] and LoacationSpark [10] use a spatial grid
as a global index. In the 2D space, rectangular grid cells have
fixed locations and dimensions, i.e., width w and height h.

This allows for constant-time calculations to specify the in-
dex numbers, IX and IY , for the grid cells as follows. Given a
point, say (x , y), then the grid cell index numbers for it are:

IX =

⌊
x −min(X)

w

⌋
, IY =

⌊
y −min(Y)

h

⌋
(1)

where (min(X), min(Y)) is the minimum value of the coor-
dinate space, w is the width and h is the height of the grid
cell. Refer to Figure 1(a) for illustration. Assuming that the
grid-cell width and height are 15 and 10, respectively, then
the index numbers for Point p are calculated as follows:

[IX][IY] = [

⌊
53 − 20

15

⌋
][

⌊
27 − 15

10

⌋
] = [2][1]

Each grid cell contains a pointer to a bucket that holds
the details of each data object located in the grid cell. Thus,
accessing a bucket requires constant time by calculating (1).
Also, finding a neighboring cell for a given cell is simple
and requires a constant time to increase/decrease the index
numbers by 1. For example, the right side cell for cell[2][3] is
cell[3][3]. The main disadvantage of the grid structure is the
load imbalance among the grid buckets for data with skewed
distributions. In the real world, the locations of the objects
(e.g., the GPS tracks or Tweets data) are not randomly gen-
erated, but are closely related to other parameters, e.g., the
time zone or the geographical traits. With the grid structure
as a spatial index, it is likely that only a small number of the
cells is active (i.e., form hot-spots) and the remaining cells
are redundant (i.e., form cold-spots).

2.2 Space-Partitioning Trees
To deal with data skew, space-partitioning trees (e.g., the
quadtree [6] or the k-d tree [2]) are commonly used in real-
world applications, e.g., [1, 8, 10, 13]. The quadtree [6] is
one of the prominent data structures due to its ability to
adaptively subdivide a densely populated node recursively
into four equal-sized quadrants, and re-distribute the node’s
objects into the quadrants until each node holds objects less
than a specific threshold, e.g., a certain bucket size.
The k-d tree [2] also decomposes its densely popu-

lated nodes recursively. A line parallel to one of the two-
dimensional axes is picked. The location of this line is de-
termined so that the line splits the objects in the original
node into two mostly equal groups of objects. Each group
of objects is pushed into one of two child nodes. In the two-
dimensional space, the root node of the tree would be divided
by a median x value of objects in the root. Then, the two
child nodes of the root would be divided by the median y
values of the objects in each node.

In both the quadtree and the k-d tree, all data objects are
typically stored at the leaf-level nodes. Searching for objects
in the index involves a traversal from the root to the leaf

An Investigation of Grid-enabled Tree Indexes for Spatial Query Processing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

nodes. For each intermediate non-leaf node, the next child
node to be visited is decided by the pivot value, i.e., a center
point or splitting line of a node in the quadtree or the k-d
tree, respectively. The time complexity of the tree traversal
depends on the height of the tree, which is proportional to
a log function of the length of the space or the number of
objects in the case of the k-d tree.
Finding a neighbor node of a given node requires a tree

traversal as well. Given a leaf node , say a, in a quadtree, its
neighbor node, say b (in the right, left, upper, or bottom di-
rections) can be found by moving upward in the tree until we
find a common ancestor of a and b then moving downward
by mirrored order [9]. The k-d tree requires a tree traversal
to find its neighbors node as well.

3 THE GRID-ENABLED TREE
In this section, we introduce the Grid-Enabled Tree, a grid-
based tree structure for efficient spatial data indexing and
query processing. As the name indicates, the GE-Tree is a
hybrid indexing approach that combines the strengths and
conceal the weaknesses of both the grid and the tree indexing.
The main purpose of studying the GE-Tree is to investigate
what benefits, if any, that may result from augmenting a grid
to the leaf level of a tree-based index.
For a given point object and a space partitioning tree

structure, finding an appropriate leaf node requires a tree
traversal from the root to the leaf nodes. Tree traversal takes
logarithmic time, as discussed above, and those traversals
can cause bottlenecks when the tree is used as a spatial index
in a system that requires minimal latency.
Notice that several data structures use a grid as part of

their structures, e.g., the pyramid data structure [11] that is a
multi-resolution data structure where the root of the pyramid
is one node that covers the entire space. The children nodes
of the root collectively cover the same space as that of the
root but at a finer resolution. Similarly, each consecutive
level of the pyramid covers the same space but at a finer
resolution. The leaf nodes of the pyramid form the finest
resolution, and collectively they form a grid structure that
covers the entire space. The difference between the GE-tree
and the pyramid data structure is as follows. While both
structures share the finest resolution grid, in contrast to the
pyramid, in the GE-tree, a leaf node of the tree does not have
finer resolution child nodes underneath except for the grid.
One of the potential goals of the GE-Tree is to eliminate

tree traversal in order to achieve constant-time access to get
to a leaf node as well as to take full advantage of a space
partitioning tree. In other words, the GE-Tree should not
require logarithmic time for the tree traversal even though
it maintains a hierarchical structure. Various types of space-
partitioning trees can be used within the GE-Tree. For a tree
to be used within the GE-Tree, it has to satisfy following

requirements: 1) The entire region that is associated with
the parent node needs to be fully decomposed to child sub-
regions, and 2) Nodes at the same level should be disjointed
from each other. A quadtree is one tree that meets these
requirements. Thus, in the following sections, we use the
quadtree as our driving structure for our investigation and
study of the GE-Tree. We term the resulting tree the Grid-
enabled Quadtree, or GQT, for short. As will be explained
in greater detail below, each grid cell in GQT will hold a
pointer to a corresponding leaf node, and leaf nodes will
contain spatial objects.

3.1 Node Operations in the GE-Tree
In this section, we examine themain index operations: search,
insert, update, and neighbor finding in the GE-Tree. We
demonstrate how to process each of them in constant time in
the context of GQT, i.e., the Grid-Enabled Quadtree structure.

3.1.1 The GE-Tree Index Structure. In order to define the grid
where each cell will hold a pointer to a leaf node, we need
to define two parameters: the size of the entire space, and
the number of cells. The size of the cell and the number of
cells in the grid can be calculated from these two parameters.
For example, if we want to build GE-Tree for the geographic
coordinates system on Earth, the range of the space would
be (lon: -180, lat: -90) to (lon: 180, lat: 90) so the size of the
entire space is 360/180, which will be width/height of the
grid. By dividing the space size by the desired number of
cells, we get the cell size in the grid. If we want a GE-Tree
with 1024 X 1024 grid cells, the width and height of each
cell will be 360/1024, 180/1024 = 0.3515625, 0.17578125. Thus,
min(X),min(Y), w , and h in (1) will be -180, -90, 0.3515625
and 0.17578125, respectively.
Once we have the grid with the above parameters, we

build the space partitioning tree on top of it. At the very
first time, we will have only a root node of the tree so all
of the grid cells have pointers to the root node. As objects
are inserted into the tree and the number of objects in the
root node hits a threshold, the root node of the tree will be
split and the corresponding grid cells will need to update
their pointers to point to the appropriate (newly created)
leaf nodes. Notice that the pointer updates can be performed
at the time of the split or lazily on-demand as discussed in
Section 3.2 (Lazy Maintenance).
Figure 2 illustrates GQT using a two-dimensional 8 × 8

grid, and a quadtree on top of it. We place the grid at the
leaf level so that every cell of the grid has a pointer to the
corresponding leaf node of the quadtree that covers this cell
in space. For example, all sixteen cells from grid[0][0] to
grid[3][3] are pointing to the same Quadtree Leaf Node ‘0’.
Also, the green, red, and blue cells are pointing to Nodes
‘22’, ‘201’ and ‘0’, respectively. Notice that Nodes 0, 1, 2,

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Shin, et al.

Figure 2: Grid-Enabled Quad tree

and 3 are assigned to the SW, SE, NE and NW child nodes,
respectively. Below, we demonstrate the advantages of this
hybrid structure.

3.1.2 Constant-Time Access to a Leaf Node. Searching for,
inserting, or updating a spatial object involves accessing
the leaf node that contains the object. In a conventional
quadtree search algorithm, the search starts at the root node,
then descends next to the child node that overlaps in space
with the object being searched. The higher the depth of the
leaf node that is being accessed, the longer it takes to reach
this node. Moreover, to insert an object into the quadtree,
first we need to search for the correct leaf node that should
contain the object. If there are frequent insertions into the
tree, the same effort for searching the tree is required each
time. Similarly, updating an object involves two searches:
one for finding and removing the existing object from the
old node, and the other for inserting into the new node.

With the help of the grid, the GE-Tree search mechanism
reduces the time it takes to get to a leaf node. As discussed
in Section 2.1, Index Numbers IX and IY for an object are
calculated using Equation (1). We use the grid cell index
numbers to follow the one pointer in Grid Cell[IX][IY], and
access the leaf node without the need for a tree traversal. For
example, in Figure 3, the corresponding leaf node for Point
p is Node ‘23’ by solving (1):

[IX][IY] = [

⌊
64 − 20

10

⌋
][

⌊
92 − 15

10

⌋
] = [4][7]

Note thatw = h = 10 in this example. Grid Cell[4][7] holds
the pointer to Leaf Node ‘23’. This obviously requires con-
stant time and does not traverse the tree to get the leaf node.

3.1.3 Constant-Time Access to a Neighboring Node. Two
nodes that are adjacent to each other are termed neighbor
nodes. In the context of a 2D quadtree, neighbor finding
refers to the following basic operation: Given a node in the
quadtree, find its neighboring node(s) in any one of the car-
dinal(N, E, S or W) or inter-cardinal(NE, SE, SW or NW)
directions. The neighbor finding operation is used in the
k-NN query as a building block. For instance, if the k-NN

Figure 3: Example of node operations

(a) GE-Tree without Lazy maintenance

(b) GE-Tree with Lazy maintenance

Figure 4: Before/after node split (a)without or (b)with lazy
maintenance of grid cells in GE-Tree

operation has found < k objects, and there are no more can-
didates in a given node, the k-NN operation expends the
searching space by examining the neighboring nodes to the
current node. Finding a neighbor node in a conventional
quadtree requires tree traversal as discussed in Section 2.2.

In the GE-Tree structure, neighbor finding is performed in
constant time without the need for traversal. Suppose that
we want to find a right-side (East) node of Node ‘202’ in
Figure 3. First, we need to get the coordinates of the bottom-
right corner of Node ‘202’ to find out which cell in the grid is
the rightmost cell that is pointing to Node ‘202’. We calculate
the index numbers for the point at the bottom-right corner
of Node ‘202’, and we find them to be [5][5]. Then, the right-
side neighboring node for Node ‘202’ is pointed by a grid
cell that is to the right of Grid Cell[5][5], so that we can get
the pointer indicating the correct neighbor node from Grid
Cell[5+1][5], which is Node ‘21’. A node in any direction can
be accessed analogously. Again, we achieve constant time
access to find a neighbor node without traversing the tree.

An Investigation of Grid-enabled Tree Indexes for Spatial Query Processing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

nisLeaf nisSpl it node’s status

true - leaf node
false true merged to parent
false false divided to children

Table 1: Node’s status for lazy maintenance

3.2 Lazy Maintenance of the Grid Cells
If not done right, maintenance of the grid in the GE-Tree
structure would be costly. The reason is that each grid cell
contains a pointer to the corresponding tree node. Splitting
or merging of a tree node involves a costly update to the
grid cells because the former node is no longer a leaf node
after the splitting/merging and the cells pointing to the node
being split/merged do not hold valid pointers to a leaf node
anymore. If node splitting or merging occurs frequently, the
overhead of reassigning pointers of the affected cells becomes
expensive. To resolve this issue, we adopt a lazy maintenance
technique to update the pointers on-demand, only as needed.
This lazy maintenance approach is explained next.

In the GE-Tree structure, each node, say p, has two flags,
nisLeaf and nisMerдed , to denote the current status of the
node. Once Leaf Node p gets split into its children, we set
p’s flags to be nisLeaf = f alse , nisMerдed = f alse , and
set the newly created child nodes’ flags as nisLeaf = true ,
nisMerдed = f alse . Likewise, if leaf nodes are merged into
their parent node, then the isLea f and isMerдed flags for
the leaf nodes are set to f alse , and true , respectively, and the
parent node’s isLea f flag to true . Table 1 gives the status of
a node for the various combinations of values for the nisLeaf
and nisMerдed flags.
Using the flags in a node, a leaf node pointer in a cell is

updated only when the isLea f flag is true. For example, in
Figure 4(a), when Node ‘0’ is divided to four child nodes
without Lazy Maintenance, all of the grid cells for Node
‘0’ (i.e., all 4 × 4 cells) need to be updated to point to the
corresponding child nodes, ‘00’, ‘01’, ‘02’, or ‘03’, based on
the location of each of the 16 grid cell. This would result in
massive overhead, especially when there are frequent node
splitting and merging in the GE-Tree. The GE-tree applies
a Lazy Maintenance technique. Assume that we access a
grid cell, say c . We check the current status of the node,
say p, that c points to. If p’s flags are nisLeaf = f alse and
nisMerдed = true , then p is not a leaf anymore as p has
been merged in a previous tree update step, and one of p’s
ancestor nodes, say Node q is supposed to be the new leaf
that c should be pointing to. Thus, c needs to be updated
to point to q; the correct leaf node. To locate q, we start
from Node p and traverse upward to each of the ancestors
of p. For each visited node, say s , we check the nisLeaf flag
for Node s . If s’s nisLeaf flag is false, we set s to s’s parent

and repeat this step. We stop when we reach a node s with
nisLeaf = true flag. The second case that we need to consider
is when Grid Cell c is pointing to a node, say p, with the flag
settings nisLeaf = f alse and nisMerдed = f alse . This setting
corresponds to the case when Node p got split one or more
time during a former tree update operation. Thus, to fix Grid
Cell c’s pointer to point to the correct leaf node, we need
to descend the tree under p where the child nodes that we
descend have to contain Grid Cell c . This descending step is
repeated as long as the isLea f flag for the visited child node
is set to false. Once one of the descendant nodes of p, say
q that spatially contain Grid Cell c has its isLea f flag with
true, we stop descending and set c’s pointer to q, which is
the current leaf node that contains c . As in Figure 4(b), grid
cells in a hot-spot area will indicate correct leaf nodes as
they are visited more often.

4 QUERY OPERATIONS
In this section, we study two query operations; the range
search and the k-NN operations for the GE-Tree. The GE-
Tree structure uses the grid to directly locate leaf nodes.
Thus, we need to study how the range and k-NN operations
benefit from the presence of the grid.

4.1 The Range Search Operation
Consider the case when a quadtree is used as the space-
partitioning tree for the GE-Tree, i.e., what we term GQT. A
conventional tree-based quadtree performs a range search
operation by recursively descending the tree starting from
the root node down as long as the visited nodes overlap the
query range. Once the leaf nodes are reached, the objects
in these leaf nodes that overlap the query range will be
reported as output of the range search operation [3]. If the
leaf node is fully contained in the range of the query, all of
the objects in the node will be returned as output without
further validation.
The way the GE-Tree structure accesses leaf nodes de-

pends on the grid. This affects the algorithm for the range
search operation as we illustrate below. Mainly, we examine
how the range search operation is performed over GQT, and
then discuss its correctness. Algorithm 1 and Figure 5 show
how the new range query works in GQT with running ex-
amples for the query represented by the red rectangle. For
the range search algorithm, we maintain two additional data
structures to facilitate efficient processing, mainly (1) a First-
In-First-Out (FIFO) queue to store the index coordinates of
grid cells, and (2) a hash map to store the resulting leaf nodes.

The range search algorithm for the GE-Tree starts from the
lower-left corner of the query range boundary, and moves to-
wards the upper-right corner. In each node, we examine two
adjacent nodes in the right and upper directions, as in Lines
6 and 12 in Algorithm 1 respectively, then insert the node

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Shin, et al.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: An example of range query on GQT

into the result hash map if the node has not been accessed
before. In Line 7 of the algorithm, there are two cases to set
the grid cell index of the node that will be enqueued based
on the node’s position within the search range. If the current
node intersects with the bottom-side border of the query,
we get IndexX from the first column in the node and the
same IndexY from the previous search step, i.e., the grid cell
index of Node B in Figure 5(b) is [4][3] where IndexX = 4 is
from the first column of Node B and IndexY = 3 is from the
previous grid cell index enqueued in Node A. Otherwise, if
the current node is fully contained in the search range, we
get the grid cell index from the lower-left corner cell in the
node. Similarly, this strategy is applied to the upper-direction
search in Line 13. If a node is under the left-side border of the
query, it will get the same IndexX from the previous search
step and IndexY from first row of the node. This is illustrated
by the following example.
In Figure 5, we start from the Grid Cell [2][3] and insert

the index coordinates into the queue . The node indicated
by the cell is Node ‘A’, and it is fetched in constant time
as discussed in Section 3.1.2. Then, we insert Node ‘A’ into
the resultMap. Next, we calculate the index numbers for
the right-side node, i.e., Grid Cell[4][3] as described in Sec-
tion 3.1.3. Grid Cell[4][3] overlaps the range of the query, but
is not in the resultMap. Thus, we insert the id of the leaf node
pointed by Grid Cell[4][3], i.e., Node ‘B’, into the resultMap,
and enqueue Grid Cell [4][3]. In addition, we probe an upper-
side neighbor, i.e., Node ‘I’, fetched by Grid Cell[2][4], and
insert them into the resultMap and into the queue . In the

Algorithm 1: Range query algorithm using GQT
Input: query range
Output: resultMap having all leaf nodes’ id intersected

with the query range
1 cell ← bottom-left cell of the query range;
2 queue .enqueue(cell .index());
3 resultMap.put(cell .node());
4 while queue is not empty do
5 cell ← queue .dequeue();
6 rID ← cell .getRightSideNodeID();
7 rIndex(X ,Y) ← cell index of the rID node;
8 if rIndexX ≤ query range then
9 if not resultMap.containsKey(rID) then

10 resultMap.put(rID);
11 queue .enqueue(rIndex(X ,Y));

12 uID ← cell .getUpperSideNodeID();
13 uIndex(X ,Y) ← cell index of the uID node;
14 if uIndexY ≤ query range then
15 if not resultMap.containsKey(uID) then
16 resultMap.put(uID);
17 queue .enqueue(uIndex(X ,Y));

18 return resultMap

next iteration, the head of the queue is Grid Cell[4][3]. Thus,
we search Grid Cell[4][3]’s two neighbor nodes towards the

An Investigation of Grid-enabled Tree Indexes for Spatial Query Processing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

right and upper directions, i.e., [6][3]/‘C’ and [4][4]/‘D’ in Fig-
ure 5(c). In Figure 5(d), the right-side node of Grid Cell[2][4]
is Node ‘D’ with the Grid Cell [4][4]. At this point, Node ‘D’ is
no longer processed as Node ‘D’ is already in the resultMap.
Grid Cell[4][4] will be searched and processed when this grid
cell gets dequeued from the queue in future iterations. When
searching toward the upper direction fromGrid Cell[2][4], IY
exceeds the query range, and thus we skip progressing in this
direction. The next step is to process Grid Cell[6][3], as in
Figure 5(e). We skip the right-direction procedures because it
exceeds the query range and insert Grid Cell[6][4] (Node ‘F’)
into the queue (resultMap), respectively. The next iterations
are illustrated in Figure 5(f), 5(g) and 5(h), where we process
the grid cells/Node pairs [5][4]/‘E’, [4][5]/‘G’, [6][6]/‘K’, and
[5][5]/‘H’. The remaining elements in the queue do not affect
the resultMap. Once we iterate over all of the items in the
queue , we get the complete set of nodes that overlaps the
spatial range of the range search operation. The proof of
correctness of the range search is omitted to conserve space.

4.2 The k-NN Operation
In this section, we present an algorithm for the k-nearest
neighbor (k-NN, for short) operation in GQT, and investigate
how k-NN can benefit from the presence of the grid, and how
it retrieves correct results in an efficient way. Hjaltason and
Samet [7] present the Distance Browsing algorithm, where
they use a priority queue to select the nearest elements and to
avoid repeated tree traversal in the context of a PMR quadtree
while retrieving a next nearest neighbor. In addition to the
nearest elements, the priority queue also stores and priorities
all the intermediate tree nodes visited during the search path
to the leaf node that contains the k-NN query point. A node
will be examined when it reaches the head of the queue. The
GE-Tree does not traverse the tree to get the leaf node so we
need to adapt the Distance Browsing algorithm [7] to make
use of the grid and process the k-NN query properly.
Algorithm 2 presents how the k-NN query is processed

using GQT. The algorithm borrows the idea of a priority
queue, where both the nodes and objects are inserted into
the same queue and are ordered by the distance from the
query point. Given a query point q, we can get a leaf node as
discussed in Section 3.1.2 and insert the node into the priority
queue (Lines 2-4). If the head of the queue is an object, we
insert the object into the resultArray, and return the result
if we have k nearest neighbors (Lines 7-10). If the head of
the queue is a node, we first insert all the objects in the node
into the priority queue to be ordered by distance from the
query point (Lines 12-13). In addition, there is a case that the
next nearest neighbor object could exist in an adjacent node,
and not necessarily in the current node. Thus, we insert the
nodes adjacent to the current node into the queue (Lines
14-16). Getting all adjacent nodes to a given node requires

1

[1][0] [2][0] [3][0] [4][0] [5][0] [6][0] [7][0]

[0][7]

[0][6]

[0][5]

[0][4]

[0][3]

[0][2]

[0][1]

[0][0]

A

D

C

B

E

F

H

G

I

𝑜"

𝑜#

𝑜$

𝑜%

𝑜&

10(20,15)

10

𝑞

Figure 6: k-NN query example

multiple neighbor finding operations, as discussed in 3.1.3.
The conditional statement in Line 15 is to filter out a node
because if Dist(q,node) < Dist(q, element), the node has to
be processed in the past iteration. Notice that items in the
priority queue are ordered by the distance from the query
point. Lines 17-18 eliminate duplicate nodes from the queue.
Lastly, Line 19 is to return the current result sets when the
queue is empty before we find all the k objects. In this case,
the total number of objects in the index is actually less then
k , so all of the objects will need to be reported as output.

Refer to Figure 6 for illustration. Suppose that we want
to process a k-NN query with k = 2 and the distances of
objects and nodes from the query point q = (45, 54) are as
follows: { o1 : 27.2, o2 : 14.1, o3 : 4.12, o4 : 25.49, o5 : 25.63
} and { A : 1.00, B : 25.81, C : 18.60, D : 15.03, E : 15.00,
F : 19.00, G : 19.65, H : 5.00, I : 0 }. At the first iteration,
we dequeue I (Line 6), enqueue the object o2 (Lines 12-13)
then enqueue neighbor nodes of the I , which are G, F , E,
D, A, and H (Lines 14-16). At this point, the priority queue
is holding [A, H , o2, E, D, F , G] as ordered by the distance
from q. In the next iteration, we dequeue A, enqueue o3 and
the neighbor nodes under the green line, i.e., Nodes H , E, D,
C , and B. Notice that I is filtered out because the distance
between I and q is 0 so that the queue has [o3, H ,H , o2, E,E,
D,D, C , F , G, B] at this moment. Next, we dequeue Object
o3 and insert it into the resultArray (Line 8). In the next
step, we dequeue H , and enqueueG and F , so that the queue
contains [H , o2, E,E, D,D, C , F ,F , G,G, B]. At this point, the
head of the queue equals to the current element , H , so we
dequeue head items until the head differs from the current
element . Therefore, the queue becomes [o2, E,E, D,D, C , F ,F ,
G,G, B]. The dequeued element in the next iteration is o2 so
it is added to the resultArray then the loop is terminated
and returns the output results.
The main difference between the Distance Browsing al-

gorithm and the grid-enabled tree algorithm is in how to
hold nodes in the priority queue. In the Distance Browsing

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Shin, et al.

Algorithm 2: k-NN algorithm using GQT
Input: q: query point, k : number of neighbors
Output: resultArray containing k nearest objects

1 resultArray ← NewArrayList();
2 lea f node ← getLeafNode(queryPoint);
3 queue ← NewPriorityQueue();
4 queue .enqueue(0, leafnode);
5 while queue is not empty do
6 element ← queue .dequeue();
7 if element is an object then
8 resultArray.add(element);
9 if resultArray.size() == k then

10 return resultArray

11 else // element is a leaf node
12 for each object in leaf node element do
13 queue .enqueue(Dist(q, object), object);
14 for each adjacent node of the node element do
15 if node not visited before then
16 queue .enqueue(Dist(q, node), node);

17 while element == queue .head() do
18 queue .dequeue();

19 return resultArray

algorithm, the leaf node is accessed in a top-down manner,
where the queue holds all intermediate nodes in the search-
ing path from the root to the leaf node and examines the
leaf node when it is at the head of the queue. However, the
GE-Tree does not touch a non-leaf nodes so that the queue
is maintained in a bottom-up fashion, i.e., the leaf nodes are
enqueued gradually as the searching proceeds.

5 PERFORMANCE ANALYSIS
In this section, we evaluate the performance of GQT for tree
building (insertions), node access, neighbor finding, range
search, and k-NN query operations as compared with a con-
ventional quadtree. All the experiments are conducted on a
machine running Mac OS 10.13.4 on Intel Core i7 with 2.3
GHz and 16 GB ofmainmemory.We use three datasets [4, 12]
with millions of points: Brightkite(4.4m), Gowalla(6.4m) and
TIGER(13.9m). In the Datasets Brightkite and Gowalla, points
having no coordinates are excluded from the experiments.
The TIGER data is a set of points that are sampled from all
coordinates of roads in the United States. The performance
metric that we use is the execution time of the operations.
In all experiments, the resolution of the grid in GQT is set to
212 × 212, and the node capacity of the tree is set to 100.

0 1 2 3 4
×106

0

500

1,000

Data count

C
um

. e
xe
cu
ti
on

ti
m
e
(m

s
)

Quadtree
GQT

GQTwLM

(a) Brightkite

0 1 2 3 4 5 6 7
×106

0

500

1,000

1,500

2,000

Data count

C
um

.e
xe
cu
ti
on

ti
m
e
(m

s
)

Quadtree
GQT

GQTwLM

(b) Gowalla

0 0.2 0.4 0.6 0.8 1 1.2 1.4
×107

0

1,000

2,000

3,000

Data count

C
um

.e
xe
cu
ti
on

ti
m
e
(µ
s
)

Quadtree
GQT

GQTwLM

(c) TIGER

Figure 7: Performance of tree building (insertions)

Brightkite Gowalla TIGER

0.5

1

1.5

2

0.4
8 0.5
4

0.7
70.9

6

0.8
9

1.7
5

0.3
8

0.3
6 0.5

4

0.3
9

0.3
8 0.5

4

Av
g.
ex
ec
ut
ion

tim
e(

µs
)

Grid
Quadtree
GQT

GQTwLM

(a) Node access

Brightkite Gowalla TIGER

0.4

0.6

0.8

1

0.4
5 0.4
7

0.4
8

0.6 0.6
1

0.9
2

0.3
4 0.3
6 0.4

0.4
4

0.4
4

0.4
5

Av
g.
ex
ec
ut
ion

tim
e(

µs
)

Grid
Quadtree
GQT

GQTwLM

(b) Neighbor finding

Figure 8: Performance of node operations

5.1 The Performance of the Insert and Search
Operations

First, we analyze the performance of the insert operation
when building a GE-tree. We compare both GQT and GQT
with Lazy Maintenance (GQTwLM, for short) against a con-
ventional quadtree and a grid. As the quadtree grows by node
splits, the time it takes to traverse the quadtree to reach to
the leaf node increases. However, with the help of the grid, to
access a leaf node, GQT reduces that time significantly. The
three graphs in Figure 7 illustrate that the total execution
time of tree construction in GQT achieves up to 2x speedup
on all the tree datasets (Brightkite, Gowalla and TIGER).
Observe that GQTwLM performs better than the GQT in

Datasets Brightkite and Gowalla due to the use of Lazy Main-
tenance but does not have an advantage in the case of the
Tiger dataset. The reason is as follows. As discussed in Sec-
tion 3.2, GWTwLM avoids unnecessary updates to the grid
cells by correcting the node pointers only on demand in a
lazy fashion and not eagerly as explained in Section 3.2. The
data points in Datasets Brightkite and Gowalla are highly
skewed. Thus, there exist many grid cells that do not need to
be updated throughout the insertions during tree construc-
tion. Although there are few points at the very beginning of
the tree building, GQT needs to update its grid cells (up to
212 × 212) to point to the corresponding leaf nodes. On the
other hand, the TIGER data has more balanced and uniformly
distributed data points than the other two datasets. This im-
plies that most of the grid cells in GQT and in GQTwLM are
occupied, and need to be updated in the tree-building phase.
Thus, in this case, for the Tiger dataset, the effect of the Lazy
Maintenance is minimal.

An Investigation of Grid-enabled Tree Indexes for Spatial Query Processing SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA

1/4 1/2 1 2 4 8 16

2

4

6

8

Dimension size

Av
g.
ex
ecu

tio
nt

im
e(

µs
)

Grid
Quadtree
GQT

GQTwLM

(a) Range - Brightkite

1/4 1/2 1 2 4 8 16

2

4

6

8

Dimension size

Av
g.
ex
ecu

tio
nt

im
e(

µs
)

Grid
Quadtree
GQT

GQTwLM

(b) Range - Gowalla

1/16 1/4 1 4 16 64

0

20

40

60

80

Dimension size

Av
g.
ex
ecu

tio
nt

im
e(

µs
)

Grid
Quadtree
GQT

GQTwLM

(c) Range - TIGER

1 2 4 8 16
0

50

100

150

k

Av
g.
ex
ecu

tio
nt

im
e(

µs
)

Grid
Quadtree
GQT

GQTwLM

(d) k-NN - Brightkite

1 2 4 8 16

20

40

60

k

A v
g.
ex
ec
uti

on
tim

e(
µs
)

Grid
Quadtree
GQT

GQTwLM

(e) k-NN - Gowalla

1 2 4 8 16 32

0

200

400

600

800

k

Av
g.
ex
ec
uti

on
tim

e(
µs
)

Grid
Quadtree
GQT

GQTwLM

(f) k-NN - TIGER

Figure 9: Performance of range and k-NN query

After the trees are constructed for each dataset, we per-
form micro-benchmarks to study the search performance on
GQT using a testset. Each testset has 1,000 sampled points
from each of the datasets and varied their coordinates with
±0.25 so the test points are still skewed in the search space.
In the case of a grid-only structure, we initialize a fixed-size
grid structure then insert data points into the grid. Note that
the grid is a static structure so the grid cells are neither di-
vided nor merged. After the insertions, we conduct the same
procedures using testsets to test the search performance of
the grid. First, we examine the access time to reach to the leaf
node with the testset on each of the grid, quadtree, GQT, and
GQTwLM. As illustrated in Figure 8(a), GQT and GQTwLM
perform better than the quadtree in all cases. From this ex-
periment, observe that GQT has shorter execution time than
GQTwLM. The reason is that, at search time, all of the grid
cells in GQT already have the correct pointers to leaf nodes,
while this is not the case for GQTwLM. In GQTwLM, some of
the node pointers in the grid cells are not up-to-date due to
the splits during insertion. Therefore, GQTwLM takes a little
more time to update its grid cells, which is due to the Lazy
Maintenance saved during insertions. Another search opera-
tion is finding a neighboring leaf node from a given one. As
discussed in Section 2.2, the conventional quadtree requires
a tree traversal to find a neighboring node from a given node.
In contrast, GQT avoids this traversal during neighbor find-
ing as discussed in Section 3.1.3. We conduct experiments

with similar testsets as discussed above to examine the neigh-
bor finding execution time. Figure 8(b) demonstrate that the
neighbor finding in GQT and GQTwLM performs better than
the one in the quadtree by 250%.
Although the grid and GQT perform better than the con-

ventional quadtree, it is interesting to observe that GQT
performs better than the grid for node operations. One of
the reasons could be due to memory management issues. In
the grid for a skewed dataset, there could be lots of unused
nodes wasting memory resources or hot-spot nodes con-
taining excessive objects in its container leading to slower
performance when using the grid.

5.2 RangeQuery Performance
In this section, we study the performance of the range query
on the grid, the quadtree, GQT, and GQTwLM. As in Figure 5,
a range query is defined by a location (x, y) and dimensions
(w× h).We use the query location from the testsets described
in the experiments above and vary the query dimensions to
study the effect of the range size.

Although we achieve constant-time access to perform the
neighbor finding operation, there exist maintenance over-
heads due to the FIFO queue and the hashmap in Algorithm 1.
In contrast, the conventional range query algorithm requires
tree traversals but it has minor computational overhead at
each level in the tree to find a node’s child. The range search
algorithm for GQT involves some computational overhead
to “compute" the locations of the leaf nodes inside the search
range. Notice that the amount of computational overhead
in GQT is proportional to the number of leaf nodes inside
the search range. Generally speaking, the smaller the search
range, the smaller the computational overhead. Therefore, it
is expected that GQT’s range query algorithmwould perform
better as long as its computational overheads are smaller than
the tree traversal time. In other words, Algorithm 1 performs
better when the height of the tree is large and the size of
the range query is small. In this experiment, we vary the
size of the query range sizeO f QueryRanдe = d · cellSize by
adjusting dimension value, d .
Figures 9(a), 9(b), and 9(c) give the performance results

of the range query for the grid, the quadtree, GQT, and
GQTwLM. For the datasets Brightkite and Gowalla, the com-
putational overhead in either GQT and GQTwLM is smaller
than the time for the tree traversals in the conventional
quadtree when d < 8. For the TIGER dataset, the calculation
overhead in both GQT and GQTwLM exceeds the tree tra-
versal time when d ≥ 16. For small sized search ranges, we
achieve a speedup of up to 2.53, 2.82, 3.65 times in GQT and
2.49, 2.57, 3.41 times in GQTwLM on contrast to using the
conventional quadtree for Brightkite, Gowalla and TIGER
data. For the same reason discussed in the previous sections
(i.e. lazy maintenance), GQT performs better than GQTwLM

SIGSPATIAL ’19, November 5–8, 2019, Chicago, IL, USA Shin, et al.

in the skewed dataset cases. The grid structure beats all oth-
ers in the range query. Although the grid needs to access
much more cells than the quadtree or GQT, its overhead for
range query is smaller than the other structures.

5.3 k-NNQuery Performance
In this experiment, we examine the performance of the k-NN
query using GQT and GQTwLM in comparison with the grid
and the conventional quadtree. Similar to the range search
experiments, we use the testsets for the query point and ad-
just k , the number of nearest neighbors. The same contrast
between the computational overhead versus the tree traver-
sal time exists in the k-NN query as above. Even though the
k-NN algorithm for GQT provides a bottom-up approach for
computing k-NN, the computational overheads exist during
the process of finding the neighbor nodes (Lines 14-16 in
Algorithm 2). Therefore, we expect that the performance of
the k-NN performs better when the height of the tree is large
or the number k is small and the points are clustered near
each other, so that the computational overheads in GQT do
not exceed the tree traversal time in the quadtree.
Figures 9(d), 9(e), and 9(f) give the performance of the k-

NN query in the grid, the quadtree, GQT, and GQTwLM. The
results demonstrate that the performance of the k-NN query
is better for smaller k values, i.e., k < 16 for all datasets.
Similar to the range query experiments, GQT performs bet-
ter than GQTwLM due to the additional overhead due to
Lazy Maintenance on the deprecated nodes in GQTwLM. As
discussed earlier, the main disadvantage of the grid is the
load imbalance with skewed data points. For the k-NN oper-
ation, as k increases, many adjacent cells need to be accessed
to find all k points specifically when dealing with skewed
datasets. If the skew is high, many of the cells accessed will
be empty, and the searching space will need to be extended.

6 CONCLUSIONS
This paper investigates the tradeoffs for adding a grid along
with a space-partitioning tree. It introduces the Grid-Enabled
Tree (the GE-Tree); a hybrid data structure containing a grid
and a space partitioning tree. The paper’s focus is when the
spatial tree is actually a quadtree (GQT). The GE-Tree han-
dles skewed datasets, achieves constant-time node access
operations, and provides Lazy Maintenance functionality to
save time for updating unnecessary cells in GE-Tree. We
also present new algorithms for the range and k-NN queries
used in GQT. The performance study demonstrates there is a
trade-off between the time it takes to traverse the tree and is
affected by the height of the conventional quadtree, and the
computational overhead it takes to “compute" the locations
of the leaf nodes and directly accessing them in GQT. The
performance study illustrates that GQT outperforms the con-
ventional quadtree structure in the range and k-NN queries

in specific circumstances (e.g., when the height of the tree
is big and the search range is small in the case of the range
search operation or when the value of k is small in the case
of the k-NN operation). GQT outperforms the conventional
quadtree for node access operations, e.g., when searching for
a query spatial object or for the neighbor finding operation.
Also, GQT performs better than the grid-only structure on
node access operations, specifically on k-NN with large k .

ACKNOWLEDGEMENTS
Walid G. Is the Aref acknowledges the support of the NSF
under Grant Numbers. III-1815796 and IIS-1910216.

REFERENCES
[1] Furqan Baig, Hoang Vo, Tahsin Kurc, Joel Saltz, and Fusheng Wang.

2017. Sparkgis: Resource aware efficient in-memory spatial query
processing. In Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, 28.

[2] Jon Louis Bentley. 1975. Multidimensional binary search trees used
for associative searching. Commun. ACM 18, 9 (1975), 509–517.

[3] Jon Louis Bently and Donald F. Stanat. 1975. Analysis of range searches
in quad trees. Inform. Process. Lett. 3, 6 (1975), 170 – 173. https:
//doi.org/10.1016/0020-0190(75)90034-4

[4] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and
mobility: user movement in location-based social networks. In Proceed-
ings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1082–1090.

[5] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A
mapreduce framework for spatial data. In 2015 IEEE 31st international
conference on Data Engineering. IEEE, 1352–1363.

[6] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad trees a data
structure for retrieval on composite keys. Acta informatica 4, 1 (1974),
1–9.

[7] Gísli R. Hjaltason and Hanan Samet. 1999. Distance Browsing in
Spatial Databases. ACM Trans. Database Syst. 24, 2 (June 1999), 265–
318. https://doi.org/10.1145/320248.320255

[8] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
2011. MD-HBase: A scalable multi-dimensional data infrastructure for
location aware services. In 2011 IEEE 12th International Conference on
Mobile Data Management, Vol. 1. IEEE, 7–16.

[9] Hanan Samet. 1982. Neighbor finding techniques for images repre-
sented by quadtrees. 18, 1 (1982), 37–57.

[10] Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani,
and Walid G Aref. 2016. Locationspark: A distributed in-memory data
management system for big spatial data. Proceedings of the VLDB
Endowment 9, 13 (2016), 1565–1568.

[11] Steven Tanimoto and Theo Pavlidis. 1975. A hierarchical data structure
for picture processing. Computer graphics and image processing 4, 2
(1975), 104–119.

[12] U.S. Census Bureau. 2017. TIGER/Line Shapefile. http://www.census.
gov/geo/www/tiger/

[13] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. Geospark: A cluster
computing framework for processing large-scale spatial data. In Pro-
ceedings of the 23rd SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM, 70.

https://doi.org/10.1016/0020-0190(75)90034-4
https://doi.org/10.1016/0020-0190(75)90034-4
https://doi.org/10.1145/320248.320255
http://www.census.gov/geo/www/tiger/
http://www.census.gov/geo/www/tiger/

	Abstract
	1 Introduction
	2 Background
	2.1 The Grid Structure
	2.2 Space-Partitioning Trees

	3 The Grid-Enabled Tree
	3.1 Node Operations in the GE-Tree
	3.2 Lazy Maintenance of the Grid Cells

	4 Query Operations
	4.1 The Range Search Operation
	4.2 The k-NN Operation

	5 Performance Analysis
	5.1 The Performance of the Insert and Search Operations
	5.2 Range Query Performance
	5.3 k-NN Query Performance

	6 Conclusions
	References

